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The stability of nonlinear tertiary solutions in rotating plane Couette flow is examined
numerically. It is found that the tertiary flows, which bifurcate from two-dimensional
streamwise vortex flows, are stable within a certain range of the rotation rate when
the Reynolds number is relatively small. The stability boundary is determined by
perturbations which are subharmonic in the streamwise direction. As the Reynolds
number is increased, the rotation range for the stable tertiary motions is destroyed
gradually by oscillatory instabilities. We expect that the tertiary flow is overtaken by
time-dependent motions for large Reynolds numbers. The results are compared with
the recent experimental observation by Tillmark & Alfredsson (1996).

1 Introduction
Shear motions of fluids are affected by system rotation. Understanding the effect

of the Coriolis force on transition from laminar shear motions to turbulence is of
considerable importance in designing rotating devices in engineering and industrial
applications (Bradshaw 1969, 1988), and in resolving mechanisms of natural phenom-
ena in geophysical and astrophysical studies (Tritton 1978, 1985; Tritton & Davies
1981; Hopfinger 1989; Hopfinger & Linden 1990).

It is well known that for rotating channel flows with the rotation vector in the
spanwise direction, the Squire theorem does not hold and streamwise-independent
disturbances are responsible for the onset of secondary motions in general (see Hart
1971 and Lezius & Johnston 1976; for example). The secondary motions take the
form of roll cells (streamwise vortex flows), which are streamwise independent and
regularly spaced in the spanwise direction. Subsequent development of the flows is
characterized by three-dimensional motions with dominant streamwise vortex struc-
tures (see Alfredsson & Persson 1989; Finlay 1989, 1990; Yang & Kim 1991; for
rotating Poiseuille flow).

Recently, preliminary experimental investigations have been carried out on rotating
plane Couette flow by Tillmark & Alfredsson (1996). They report that for a fixed
rotation rate the roll cells with spanwise width approximately equal to the gap between
the two plates break down to a wavy vortex structure with the streamwise wavelength
approximately three times the spanwise width of the vortex as the strength of the
shear is increased.

Mathematically, the problem of plane Couette flow under system rotation is identi-
cal to that of the narrow gap limit of the almost co-rotating Taylor–Couette system.
The bifurcation sequence and the transition of the latter have been investigated in-
tensively by Nagata (1986, 1988). By ‘almost co-rotating’ it is meant that the two
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concentric cylinders rotate with almost equal angular velocities. We briefly summarize
Nagata’s findings below. With the background rotation Ω, the stability of the basic
flow is determined by a single non-dimensional parameter, called the Taylor number,

T = Ω(R − Ω), (1.1)

where R, to be defined in the next section, is the Reynolds number (a measure of the
shear strength across the fluid layer). At the critical Taylor number, Tc, a secondary
flow characterized by two-dimensional steady streamwise vortex motions bifurcates.
The value of Tc is 1708 and the corresponding critical spanwise wavenumber βc is
3.116. Provided that Tc = Ω(R − Ω) yields two real roots Ω = Ω(1)

c and Ω = Ω(2)
c for

a fixed R, secondary flow exists for Ω(1)
c 6 Ω 6 Ω(2)

c . For R2 � 4Tc the two roots
are approximately Ω(1)

c ' 0 and Ω(2)
c ' R. Since the almost co-rotation assumption

is only applicable near the Rayleigh line, R = Ω, instabilities of the two-dimensional
steady streamwise vortex flow were examined near Ω = Ω(2)

c . Four different types
of three-dimensional flows are identified theoretically and their onset in the (Ω,R)-
plane is in good agreement with the experimental observation by Andereck, Dickman
& Swinney (1983). They are twisted vortices, wavy vortices, wavy-inflow-boundary
flows and wavy-outflow-boundary flows. Further, recognizing that the limit Ω → 0
corresponds to non-rotating plane Couette flow exactly, Nagata (1990) extended his
analysis to the region near Ω = Ω(1)

c , although the assumption of almost co-rotation
is violated for small Ω. He found a tertiary solution branch connecting two points
Ω = Ω1 and Ω = Ω2, where the secondary flow loses its stability. (Thus, the secondary
flow is stable in the two separate intervals Ω(1)

c < Ω < Ω1 and Ω2 < Ω < Ω(2)
c .)

The tertiary solutions are steady and three-dimensional with a non-zero streamwise
wavenumber α. They bifurcate at Ω = Ω1 and Ω = Ω2 supercritically for relatively
small Reynolds numbers. For a larger Reynolds number the bifurcation at Ω1 becomes
subcritical. The subcritical nature of the tertiary solution branch led to the discovery
of nonlinear plane Couette flow solutions at Ω = 0.

It should be emphasized that the rectangular coordinate system used by Nagata is
applicable to any part of the (Ω,R)-plane in the case of rotating plane Couette flow.
We re-examine the nonlinear tertiary solutions in the system for small Ω and analyse
their stability, which has not been done so far. We shall locate the stability region of
the steady tertiary motions on the (α, Ω)-space for selected values of R. We attempt
to compare results with available experimental observation.

2 Formulation of the problem
We consider a fluid motion between two parallel plates separated by the distance

L. The bottom plate moves along in its own plane, indicated by the x-direction in
figure 1, with a constant speed 1

2
U0, whereas the top plate moves in the negative

x-direction with the same speed. A constant spanwise rotation Ω0 in the y-direction is
imposed on the system. We assume that the fluid is viscous and incompressible with
a constant density ρ and the kinematic viscosity ν.

The fluid motion is governed by the equation of continuity,

∇ · u = 0, (2.1)

and the conservation of momentum,

∂u

∂t
+ u · ∇u+ Ωj × u = −∇p+ ∇2u, (2.2)
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Figure 1. Non-dimensional physical configuration.

where the velocity u and the pressure p are normalized by ν/L and ρν2/L2. The time
t and the position vector r = (xi+yj+ zk) with i, j , k being the unit direction vectors
have been non-dimensionalized by using the time scale for the viscous dissipation
L2/ν and the length scale L. The no-slip condition is prescribed on the plates at
z = ± 1

2
:

u = ∓ 1
2
Ri. (2.3)

Thus, the non-dimensional parameters controlling the system are the Reynolds num-
ber,

R =
U0L

ν
, (2.4)

and the rotation rate,

Ω =
2Ω0L

2

ν
. (2.5)

The unidirectional flow

u = U(z)i, (2.6)

satisfies (2.1), (2.2) and (2.3) exactly with

U(z) = −Rz. (2.7)

We are concerned with the situation where u deviates from this basic state.
After introducing a velocity fluctuation û, we operate with k · ∇× ∇×, and k · ∇×

on (2.2):

(U∂x − ∇2 + ∂t)∇2∆2φ−U ′′∂x∆2φ+ Ω∂y∆2ψ + k · ∇× ∇× [û · ∇û] = 0, (2.8)

(U∂x − ∇2 + ∂t)∆2ψ −U ′∂y∆2φ− Ω∂y∆2φ− k · ∇× [û · ∇û] = 0, (2.9)

where ∆2 = (∂x)
2 + (∂y)

2 is the two-dimensional Laplacian operator, and φ and ψ
represent the poloidal and the toroidal parts of the solenoidal fluctuation û:

û = ∇× ∇× kφ+ ∇× kψ. (2.10)

The boundary conditions at z = ± 1
2

now become

φ = ∂zφ = ψ = 0. (2.11)

3 Nonlinear steady tertiary solution
In this section we briefly repeat the analysis by Nagata (1990). In order to describe

three-dimensional nonlinear steady states we separate û into the average part Ǔ(z)

Ǔ(z)i = û, (3.1)
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where the overbar denotes the xy-average, and the residual

ǔ = û− Ǔ(z)i = ∇× ∇× kφ+ ∇× kψ. (3.2)

There should be no confusion in using the same notations, φ and ψ, as in (2.10) with
different definitions. Owing to (3.1) we impose

φ = ψ = 0. (3.3)

We expand φ, ψ and Ǔ in each of the three spatial directions in terms of an
appropriate set of orthogonal functions, i.e.

φ =

∞∑
`=1

∞∑
m=−∞

∞∑
n=−∞

a`mne
imαxeinβyf`(z), (3.4)

ψ =

∞∑
`=1

∞∑
m=−∞

∞∑
n=−∞

b`mne
imαxeinβy sin `π(z + 1

2
), (3.5)

Ǔ =

∞∑
k=1

ck sin 2kπ(z + 1
2
). (3.6)

Because of (3.3), the components of φ, ψ with m = n = 0 must be incorporated
in Ǔ, and hence they are disregarded from the summations in (3.4) and (3.5).
In the expression (3.4), f`(z), which was introduced by Chandrasekhar (1961), is
symmetric/antisymmetric in z for ` equal to an odd/even integer. It satisfies f`(± 1

2
) =

f′`(± 1
2
) = 0 (see (23a) of Nagata 1986). Note that sin `π(z + 1

2
) in (3.5) is also

symmetric/antisymmetric in z depending on ` being odd/even. Owing to the symmetry

of the system, Ǔ is antisymmetric in z for any k.
The steadiness in (2.8) and (2.9) requires

(Û∂x − ∇2)∇2∆2φ− Û ′′∂x∆2φ+ Ω∂y∆2ψ + k · ∇× ∇× [ǔ · ∇ǔ] = 0, (3.7)

(Û∂x − ∇2)∆2ψ − Û ′∂y∆2φ− Ω∂y∆2φ− k · ∇× [ǔ · ∇ǔ] = 0, (3.8)

where

Û(z) = U(z) + Ǔ(z) (3.9)

is the mean velocity field distorted by the nonlinear interactions between the compo-
nents of φ and ψ.

After substituting (3.4), (3.5) and (3.6) in (3.7) and (3.8), we multiply them by
exp(−iµαx) exp(−iνβy)fλ(z) and exp(−iµαx) exp(−iνβy) sin λπ(z+ 1

2
), respectively, and

average the results over the fluid layer. The integers µ, ν and λ run through all the
admissible values. Since the case where both µ and ν are zero at the same time is not
admissible in (3.7) and (3.8), we must derive an additional equation for Ǔ. This is
accomplished by the xy-average of the x-component of (2.2),

(dz)
2Ǔ + dz∆2φ(∂2

xzφ+ ∂yψ) = 0, (3.10)

where (2.1) is used in the derivation. We multiply (3.10) by sin 2κπ(z + 1
2
) for all the

admissible integers κ and integrate the result over the entire depth of the fluid layer.
The integrals involved in this Galerkin procedure are evaluated analytically.
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We note that the boundary conditions

φ = ∂zφ = ψ = Ǔ = 0 (3.11)

at z = ± 1
2

are satisfied by (3.4), (3.5) and (3.6).
The nonlinear differential equations (3.7), (3.8) and (3.10) have now been trans-

formed into an infinite set of nonlinear algebraic equations for a`mn, b`mn and ck . The
reality condition requires

a∗`−m−n = a`mn, b∗`−m−n = b`mn, (3.12)

where the asterisk ∗ denotes the complex conjugate. The system is further simplified
by its symmetry: it can be found that the set A2 in the Appendix (A 1) is closed for
the nonlinear interactions among its components (see Nagata 1986).

For numerical purposes the infinite series in (3.4), (3.5) and (3.6) must be truncated
so that only those components with a`mn, b`mn and ck are taken into account, if their
subscripts satisfy

`+ |m|+ |n| < NT , k < N ′T . (3.13)

The resulting finite set of nonlinear algebraic equations

Aijxj + Bijkxjxk = 0, (3.14)

is solved using the Newton–Raphson iteration method, where the matrix Aij and the
third-order tensor Bijk are functions of α, β, R, and Ω, and xj represents a vector
whose elements are the amplitudes a`mn, b`mn and ck .

The numerical convergence of the three-dimensional nonlinear solution at Ω = 20
and R = 200 is examined with respect to three truncation levels in table 1, where the
momentum transport

Mt = −dzÛ (3.15)

on the boundary z = ± 1
2

is used as a nonlinear measure of the solution. For larger
R higher truncation levels are required to obtain higher accuracy. The truncation
formula (3.13) has the advantage of reducing the dimension of the system as much as
possible without missing out vital information for the study of bifurcation (Nagata
1986, 1988, 1990).

4 Stability of the steady tertiary solution
In order to analyse the stability of the steady tertiary solutions in §3, we superimpose

perturbations

ũ = ∇× ∇× kφ̃+ ∇× kψ̃ (4.1)

of infinitesimal magnitude on û, substitute u = û+ ũ into (2.8) and (2.9), and linearize
the resulting equations with respect to ũ:

(Û∂x −∇2 + ∂t)∇2∆2φ̃− Û ′′∂x∆2φ̃+Ω∂y∆2ψ̃+ k · ∇×∇× [ũ · ∇ǔ+ ǔ · ∇ũ] = 0, (4.2)

(Û∂x − ∇2 + ∂t)∆2ψ̃ − Û ′∂y∆2φ̃− Ω∂y∆2φ̃− k · ∇× [ũ · ∇ǔ+ ǔ · ∇ũ] = 0. (4.3)

Since ǔ is periodic in the x- and y-directions, perturbations φ̃ and ψ̃ must have the
following expressions (Floquet theory):

φ̃ =

∞∑
`=1

∞∑
m=−∞

∞∑
n=−∞

ã`m ne
imαxeinβyf`(z)e

idx+ibyeσt, (4.4)
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NT ,N
′
T Mt dim x

12,10 1.631 595 9 445
13,11 1.631 593 3 589
14,12 1.631 513 6 734

Table 1. The momentum transport Mt of the three-dimensional solution.
α = 1.0, β = 3.117, R = 200, Ω = 20

ψ̃ =

∞∑
`=1

∞∑
m=−∞

∞∑
n=−∞

b̃`mne
imαxeinβy sin `π(z + 1

2
)eidx+ibyeσt, (4.5)

where α and β are equal to the wavenumbers of the steady tertiary solution. The
boundary conditions

φ̃ = ∂zφ̃ = ψ̃ = 0 (4.6)

at z = ± 1
2

are satisfied by (4.4) and (4.5). In contrast to the φ and ψ of the steady

solutions, ã`00 and b̃`00 are permissible in (4.2) and (4.3), provided d 6= 0 and b 6= 0.
Equations (4.2) and (4.3) constitute the eigenvalue problem with the growth rate σ as
the eigenvalue for a given Floquet parameter pair d and b.

When the symmetry of the steady solution is described by A2, perturbation equa-
tions (4.2) and (4.3) allow us to separate the linearly interacting components of φ̃ and
ψ̃ into the classes A and B for d = 0 and b 6= 0, and the classes C and D for d 6= 0
and b = 0 (see the Appendix). When db 6= 0, classes A and B unite and so do classes
C and D. The resulting two united sets are identical.

In order to establish the eigenvalue problem in terms of ã`m n and b̃`m n, we multiply
(4.2) and (4.3) by the same functions as we used in the process of deriving nonlinear
algebraic equations for the steady flows, and average the result over the fluid layer.

The NAG routine F02BJF is used to solve the resulting eigenvalue problem

Pijx̃j = σQijx̃j , (4.7)

where x̃j represents a vector whose elements are ã`mn, and b̃`mn. The matrices Pij and
Qij are functions of the Floquet parameters d and b and the nonlinear solution a`mn,
b`mn and ck with the wavenumbers α and β at R and Ω.

For consistency the truncation level of (4.7) should be the same as that of (3.14)
for fixed α, β, R, and Ω. The dimension of x̃ is almost twice as large as that of x in
the case of either d = 0 or b = 0, and four times larger in the case of db 6= 0 (see,
for example, the level NT = 12 in tables 1 and 2). Unless specified, the truncation
numbers NT = 14 and N ′T = 12 for db = 0, and NT = 12 and N ′T = 10 for db 6= 0,
are chosen. In the case of db 6= 0, the FORTRAN programme to solve (4.7) with
vectorization and optimization requires 150 minutes cpu time on the IBM3090 at the
University of Birmingham for NT = 12, and 3 hours cpu time on the Convex C3840
at University of London Computer Centre for NT = 13.

The numerical convergence of the growth rate σ with the largest real part is checked
in table 2 for various combinations of the Floquet parameter pair d and b of the
perturbations at Ω = 20 and R = 200.

Let σi(d, b), (i = A,B,C and D) denote the eigenvalue as a function of the Floquet
parameters d and b for the classes A, B, C and D when α, β, R and Ω are fixed.
By (4.4) and (4.5) σi(0,−b) = σi(0, b) for i = A and B, and σi(−d, 0) = σi(d, 0)
for i = C and D. From (A 4) and (A 5) σB(0, b ± β) = σA(0, b) because n′′β ± β



Tertiary solutions and their stability in rotating plane Couette flow 363

(a) : (d, b) = (0, 0.779), Class A

NT σ dim x̃

12 (−9.7581, 0) 902
13 (−9.7597, 0) 1144
14 (−9.7589, 0) 1482

(b) : (d, b) = (0, 0.779), Class B

12 (−1.3244, 0) 880
13 (−1.3245, 0) 1168
14 (−1.3245, 0) 1456

(c) : (d, b) = (0.5, 0), Class C

12 (−0.10252, 0) 891
13 (−0.09566, 0) 1156
14 (−0.09809, 0) 1469

(d) : (d, b) = (0.5, 0), Class D

12 (−0.10557, 0) 891
13 (−0.09525, 0) 1156
14 (−0.09873, 0) 1469

(e) : (d, b) = (0.5, 0.779)

10 (−9.536 726, ±17.239 61) 978
11 (−9.417 305, ±17.304 09) 1340
12 (−9.448 437, ±17.297 80) 1782
13 (−9.438 069, ±17.302 32) 2312

Table 2. The growth rate σ; α = 1.0, β = 3.117, R = 200, Ω = 20. The first/second entry in the
bracket represents the real/imaginary part of σ

d = 0, b = 0.779 d = 0, b = 0.779 + β

σA (−9.758, 0) (−1.318, 0)
σB (−1.324, 0) (−9.753, 0)

d = 0.5, b = 0 d = 0.5 + α, b = 0

σC (−0.098 09, 0) (−0.096 53, 0)
σD (−0.098 73, 0) (−0.096 44, 0)

d = 0.251, b = 0.779 d = 0.251, b = 0.779 + β

σ (−8.583,±3.908) (−8.572,±3.902)

Table 3. The periodicity of the growth rate σ; α = 1.0, β = 3.117, R = 200, Ω = 20. NT = 12. The
first/second entry in the bracket represents the real/imaginary part of σ

becomes n′β and n′β±β becomes n′′β. Similarly, σD(d± α, 0) = σC(d, 0). In particular,
if d = − 1

2
α, then σD( 1

2
α, 0) = σC(− 1

2
α, 0) = σC( 1

2
α, 0). Similarly, if d = 1

2
α, then

σD( 3
2
α, 0) = σD(− 1

2
α, 0) = σC(− 3

2
α, 0) = σC( 3

2
α, 0). These relations are confirmed in

table 3.

Since σA(0, 1
2
β + b) = σA(0,− 1

2
β − b) = σB(0, 1

2
β − b) and similarly σC( 1

2
α+ d, 0) =

σD( 1
2
α− d, 0), it is sufficient to evaluate σ in the (d, b)-space only for 0 6 d 6 α/2 and

0 6 b 6 β/2.
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5 Results
We first obtain streamwise vortex flows, U0 in the Appendix (A 2), with α = 0 and

β = 3.117. They bifurcate supercritically from the laminar basic state at Ω = Ωc.
Then, the stability of the streamwise vortex flows to the general form of three-
dimensional perturbations is analysed. (These perturbations correspond to classes C
and D in the Appendix with the restriction to m′′ = 0 only. They are classified as
ŨI and ŨII in Nagata 1986.) We denote the eigenvalue for these three-dimensional
perturbations σ̃. The values of d and b which are responsible for the instability predict
the wavenumbers of bifurcating tertiary flows. Instabilities for small Ω occur at d 6= 0
and b = 0 in general with Im[σ̃] = 0 in the class ŨII , so that the tertiary flows are
expected to be steady and three-dimensional with the symmetryA2 (see Nagata 1986,
1988 for details). After obtaining the tertiary solutions (3.4)–(3.6), we analyse their
stability by calculating the eigenvalue σ of three-dimensional perturbations (4.4) and
(4.5).

5.1 R = 200

The streamwise vortex flow (α = 0, β = 3.117) bifurcates supercritically at Ω(1)
c = 8.94

as the rotation parameter Ω is increased from zero for R = 200. The stability of
the nonlinear streamwise vortex flows is examined for various values of the Floquet
parameters d and b of the superimposed perturbations. It is found that the growth
rate σ̃ becomes positive for d 6= 0 and b = 0 as Ω is increased from Ωc. Figure 2 shows
σ̃ as a function of Ω for four different values of d with b = 0. Perturbations with
d = 1.5, 2.0 never grow, whereas those with d = 1.0, 0.5 have a positive growth rate in
a finite interval Ω1 < Ω < Ω2 above Ω(1)

c . (The values of Ω1 and Ω2 depend on d.) As
d is decreased from, say 0.5, the lower limit, Ω1, of the unstable interval Ω1 < Ω < Ω2

becomes small monotonically. The minimum value of Ω1, min[Ω1(d)] = 9.96, is found
to be determined as d → 0 so that there exists a small interval of Ω immediately
above Ωc where σ̃ < 0 for any d 6= 0. Note that the streamwise vortex flow always
has zero eigenvalue for perturbations with the same spatial structure (i.e. d = 0 and
b = 0) as itself: it is neutrally stable to translational deviations. As d deviates from
zero, the growth rate becomes negative at Ω = Ωc. The growth rate remains negative
for Ωc < Ω <min[Ω1(d)] for any d 6= 0. Therefore, we conclude that the streamwise
vortex flow is stable between Ω = 8.94 and Ω = 9.96 in the case of R = 200.

We expect a three-dimensional solution to bifurcate at Ω1 and Ω2. The wavenumber
β in the spanwise direction of the three-dimensional solution is unchanged from that
of the streamwise vortex flow because the perturbation with b = 0 is responsible
for the bifurcation, whereas the new wavenumber α in the streamwise direction is
expected to take the same value as d. Figure 3 shows two tertiary solution branches
corresponding to α = 1.0 and 0.5 with β = 3.117. The bifurcations of the tertiary
solution occur at Ω1 = 14.4 and Ω2 = 32.4 for α = 1.0 and β = 3.117, and at Ω1 = 11.1
and Ω2 = 38.0 for α = 0.5 and β = 3.117. The bifurcations are supercritical both at
Ω1 and Ω2 and the tertiary solutions are unique for Ω1 < Ω < Ω2, i.e. the solution
branches have no fold.

The stability calculations for the tertiary solutions show that the maximum real
part of the growth rate σ(d, b) takes place on b = 0. As the three-dimensional
tertiary solution approaches its bifurcation point Ω = Ω1, all the amplitudes of its
components except m = 0 become smaller. Therefore, the eigenvalue σ(d, 0) of the
tertiary solution agrees with the eigenvalue σ̃(mα± d, 0) of the streamwise vortex flow
for m = 0, 1, 2, · · ·, at Ω = Ω1 as shown in figure 4. (The eigenvalues near Ω = Ω2

behave in a similar way although they are not shown in the figure.) Figure 4 shows
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Figure 2. The stability of the streamwise vortex flow with α = 0 and β = 3.117 at R = 200. The
largest growth rate σ̃ is shown as a function of Ω for d = 0.5, 1.0, 1.5, 2.0 with b = 0. σ̃ is real on
solid curves and complex on dashed curves. The dash-dotted curve represents the eigenvalue (real)
of the perturbation with d = 0, b = 3.117 on the basic flow (α = β = 0).
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Figure 3. The momentum transport Mt for the nonlinear steady three-dimensional solutions with
α = 1.0, 0.5 and β = 3.117 (thick curves) at R = 200. The thin curve represents the nonlinear
streamwise vortex flow (α = 0, β = 3.117).

that the three-dimensional solution with α = 1.0 and β = 3.117 is unstable at its
bifurcation at Ω1 and gains stability in the interval 19 < Ω < 26.5 to perturbations
with d = 0.5. Further calculations have indicated that the stability range for the
three-dimensional solutions is indeed determined by perturbations with d = 0.5. We
call this instability caused by the perturbations with d = 1

2
α subharmonic instability.

Typical eigenvalues σ(d, b) for the tertiary solution within the stable range are
plotted on figure 5. We see that the maximum growth rate at Ω = 22 takes place on
b = 0 for fixed d. It decreases from zero at the origin as d is increased on b = 0. As
Ω approaches the stability limit Ω = 19 or 26.5, σ(0.5, 0) increases and touches zero
first.

In order to visualize the stable tertiary flow at Ω = 22 we project its velocity field
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rates σ̃ of the perturbations on the streamwise vortex flows with α = 0 and β = 3.117 are shown by
thin curves for various values of d with b = 0.
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Figure 5. The stability of the three-dimensional solution with α = 1.0 and β = 3.117 at R = 200
and Ω = 22. The growth rate σ̃ is negative for any combination of d, b. The solid curves indicate
real eigenvalues whereas dashed curves indicate complex eigenvalues.

at z = 0 onto the (x, y)-plane in figure 6. Strong streamwise currents with sinusoidal
undulation in the spanwise direction characterize the flow. The streamwise currents
with about a quarter of the wall speed alternate their direction on the midplane.
Recall that the mean flow Û vanishes on z = 0.

As mentioned above, Ω = Ω1(α) is a monotonically increasing function of d.
Therefore, the tertiary solution with a small α would be the first tertiary flows that
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Figure 6. The tertiary flow with α = 1.0 and β = 3.117 at R = 200 and Ω = 22. The velocity field
on z = 0 is projected on the (x, y)-plane. For reference, the magnitude of the wall speed is indicated
by the arrow.

could be realized physically as Ω is increased above Ωc. Recall that the realization of
the tertiary flows would be possible only when the tertiary solution becomes stable
to subharmonic mode. (The argument of the eigenvalue behaviour for the tertiary
solution with α = 1.0 in figure 4 applies to any tertiary solutions because Ω1(α) is a
monotonically increasing function of d. For a fixed α the tertiary solution is unstable
to the subharmonic perturbation at Ω = Ω1.) The growth rate of the subharmonic
perturbation decreases as Ω is increased and the solution gains stability at some
Ω = Ωsub(α). This stability boundary, Ω = Ωsub(α), is indicated by a thick curve inside
the curve Ω = Ω1(α) in figure 7. The boundary, Ω = Ωsub(α), is also inside Ω = Ω2(α)
since Ω2(α) is a monotonically decreasing function of d in the larger Ω region. (We
were unable to extend the curve Ω = Ωsub(α) for α < 0.4 since attempts to obtain
tertiary solutions for smaller α failed. The inability to obtain tertiary solutions for
small α will be explained in the next subsection.) Also shown in figure 7 by a thin
dashed curve is the contour of Re[σ] = −2 for perturbations with d = 0 and b = 0.
The imaginary part of this eigenvalue is not zero. This oscillatory mode does not
reach Re[σ] = 0 for R = 200 at least for d > 0.4. We shall see in the next subsection
that as R is increased, the growth rate of the oscillatory mode becomes larger so
that the stability region of the tertiary solution will be bounded by the oscillatory
instability from inside in the (α, Ω)-plane.

5.2 R = 400

The stability of the secondary flow at R = 400 is examined in figure 8. The linear
critical value Ω(1)

c is 4.32 for α = 0 and β = 3.117. The figure shows the growth rate
σ̃ of perturbations with b = 0 for various values of d. As in the case for R = 200
tertiary solutions with the wavenumber α = d bifurcate at Ω = Ω1(d) and Ω = Ω2(d).
The minimum value of Ω1(d), min[Ω(d)] = 4.71, is determined by d→ 0 as in the case
of R = 200. Recall that the maximum streamwise wavenumber that tertiary solutions
can take for R = 200 is about α = 1.27 (see figure 7). Figure 8 shows that the tertiary
solution with α = 1.5 is possible, indicating that the maxmum α increases for larger
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Figure 7. The stability of the tertiary flow. The tertiary flow is unstable at its bifurcation at
Ω = Ω1(α) (thin curve) to subharmonic perturbations and gains stability inside Ω = Ωsub(α) (thick
curve). The oscillatory mode with Re[σ] = −2 is indicated by a dashed curve. Attempts to obtain
tertiary solutions inside the dotted curve failed. R = 200, β = 3.117.

R. Although d = 1.0 has the largest growth rate in the figure, it does not mean that
the tertiary solution with α = 1.0 is most preferred.

The momentum transport Mt of three tertial solution branches for α = 0.5, 1.0 and
1.5 with β = 3.117 is plotted in figure 9. It can be seen that the bifurcation of the
tertiary solution at Ω = Ω1 is supercritical for α = 0.5 and subcritical for α = 1.5. For
α = 1.0 the bifurcation occurs at Ω1 = 6.498 subcritically (but only slightly with the
turning point at Ω ' 6.4955). The bifurcated solution branch for α = 1.0 terminates
at the upper bifurcation point (Ω = Ω2 = 47.4) supercritically, although it is not
shown in the figure. For α = 0.5 the bifurcated solution branch undergoes a sharp
turning point at Ω ' 12.5 and extends towards the small-Ω region, until it finally
terminates on the solution branch for α = 1.5 with all its harmonics, except those
with the wavenumber in the x-direction that is a multiple of three of α, which vanish.
(Note that the symmetry in A2 is unchanged by replacing α by (3α/3) and regarding
(α/3) as a new wavenumber: 3m′′ and 3m ′ are still even and odd, respectively.) This
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Figure 8. The stability of the streamwise vortex flow with α = 0 and β = 3.117 at R = 400. The
largest growth rate σ̃ is shown as a function of Ω for d = 0.5, 1.0, 1.5, 2.0 with b = 0. σ̃ is real on
solid curves and complex on dashed curves. The dash-dotted curve represents the eigenvalue (real)
of the perturbation with d = 0, b = 3.117 on the basic flow (α = β = 0).
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Figure 9. The momentum transport Mt for the nonlinear steady three-dimensional solutions (thick
curves) with α = 0.5, 1.0 and 1.5 at R = 400. β = 3.117. The thin curve represents the streamwise
vortex flow (α = 0, β = 3.117).

1 : 3 wavenumber ratio interaction is the reason for the inability to obtain tertiary
solutions for small α.

The stability analysis for the bifurcated tertiary solutions shows that the solutions
are unstable to subharmonic perturbations with d = 1

2
α and b = 0 at their bifurcation

at Ω = Ω1 as in the case of R = 200. The growth rate σ for this subharmonic mode
decreases when Ω is increased for supercritical solutions (α < 1.0). As α approaches
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Figure 10. The stability of of the tertiary flow at R = 400. β = 3.117. The stability region is bounded
by subharmonic instability Ω = Ωsub(α) (thick curve) and oscillatory instabilities ((d, b) = (0, 0),
thick dashed curve; and (d, b) = ( 1

2
α, 0) thick dash-dotted curve). The tertiary flow is unstable at

its bifurcation at Ω = Ω1(α) (thin curve) to subharmonic perturbations. The limit point of the
subcritical solution branches is represented by a dotted curve for α > 1.0.

1.0, the growth rate changes sharply and the subharmonic instability sets in on the
lower branch of the subcritical solution for (α > 1.0). Therefore, the curve Ω = Ωsub(α)
intersects with Ω = Ω1(α) as is shown in figure 10. The intersection occurs at about
α = 1.05. Furthermore, the stability region of the tertiary solutions is bounded by
oscillatory instability (d = b = 0) at a large Ω and by another type of oscillatory
instability (d = 1

2
α, b = 0) at a large α. The former oscillatory instability can be

anticipated from the analysis for R = 200 (see figure 7); it has the same spatial
structure as the tertiary flows, whereas the latter oscillatory instability is subharmonic
in the streamwise direction. The tertiary solution at the turning point becomes
unstable to this subharmonic oscillatory instability for α > 1.35. Detailed calculations
have indicated that the tertiary solution with α = 1.0 and β = 3.117 is stable for
6.515 6 Ω 6 7.4 on the upper solution branch.

The stability of the tertiary solutions near Ω = Ω2 is examined for α = 1.0
and β = 3.117. At its bifurcation at Ω2 = 47.4 the tertiary solution is unstable
to subharmonic modes with d = 1

2
α and b = 0. As Ω is decreased, the tertiary

solution gains stability at Ω ' 42. To demonstrate the stability at larger Ω the growth
rate of perturbation at Ω = 35 is plotted in the (d, b) Floquet parameter space in
figure 11. At the origin (d, b) = (0, 0), the eigenvalue σ = 0 always exists due to
the translational invariance of the problem. The zero eigenvalue is the largest at the
origin for Ω = 35. As Ω is decreased from 35, the second largest eigenvalue at the
origin crosses Re[σ] = 0 at Ω ' 32. This eigenvalue has non-zero imaginary part. The
corresponding eigenmode is the same mode that appeared near Ω1 as an oscillatory
instability. Since the eigenvalues of the perturbations responsible for instability both
at Ω = 6.515 and at Ω = 42 are real as in the case of R = 200, it appears as though
the stable interval on Ω for the three-dimensional solution branch, which existed as
a single interval for R = 200, is now divided into two parts, 6.515 6 Ω 6 7.4 and
32 6 Ω 6 42, by the appearance of a growing oscillatory mode for R = 400.

Both the real and the imaginary parts of σ of the oscillatory instabilities at d = 0
and b = 0 are plotted for various values of R for the tertiary solution with α = 1.0
and β = 3.117 in figure 12. The oscillatory instability begins to emerge when R ' 250.
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Figure 11. The stability of the three-dimensional solution with α = 1.0 and β = 3.117 at R = 400
and Ω = 35. The growth rate σ̃ is negative for any combination of d, b. The solid curves indicate real
eigenvalues whereas dashed curves indicate complex eigenvalues. The three crosses show calculations
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Figure 12. The growth rate σ of oscillatory modes with d = b = 0 for the three-dimensional
solutions with α = 1.0 and β = 3.117 for various values of R. The real part of σ is indicated by a
solid curve, whereas the imaginary part is indicated by a dashed curve.

As R is increased, the instability spreads in the directions of both increasing and
decreasing Ω. The largest growth rate always occurs around Ω = 20. The imaginary
part of the eigenvalue changes sharply for small Ω and levels off as Ω is increased.

Comparison of the stable tertiary motions at Ω = 7 and Ω = 35 in figure 13
shows that the sinusoidal spanwise undulation is larger for a higher rotation rate. The
strength of the streamwise currents is not affected by the rotation rate: the magnitude
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Figure 13. The tertiary flow with α = 1.0 and β = 3.117 at R = 400. (a) Ω = 7, and (b) Ω = 35.
The velocity field on z = 0 is projected on the (x, y)-plane. For reference, the magnitude of the wall
speed is indicated by the arrow.

of the streamwise velocity on z = 0 is almost equal to a half of the wall speed for
both Ω = 7 and Ω = 35.

5.3 R = 600

Without carrying out the stability anlysis of the streamwise vortex flows the steady
three-dimensional solutions with α = 1.0 and β = 3.117 for R = 400 are continued to
R = 600 by gradually increasing R at a fixed Ω. The subcritical nature for R = 600
becomes remarkable as shown in figure 14. The subcritical region extends even in the
negative-Ω region for α = 1.5, creating two nonlinear three-dimensional solutions of
plane Couette flow at Ω = 0. They have already been reported by Nagata (1990).
Recent analysis by Nagata (1996) using truncation levels up to NT = 18 and N ′T = 16
shows that the minimum Reynolds number where the upper and the lower solution
branches meet is R ' 510 when the wavenumbers are α = 1.15 and β = 2.35. The
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Figure 14. The momentum transport Mt for the nonlinear steady three-dimensional
solutions at R = 600; α = 1.0 and 1.5; β = 3.117.

conjecture of the abrupt bifurcation (Nagata 1990) is also supported by Conley (1994),
who obtained the minimum Reynolds number of 467 at α = 0.96 and β = 2.0 with
a resolution of 11 collocation points across the fluid depth and the Fourier modes
m, n 6 3, using the Chebyshev–Tau method.

Although the accuracy of the stability analysis gets worse as R is increased,
attempts to calculate the growth rate have been made for selected values of Floquet
parameters d and b at R = 600. Preliminary results with a slightly lower truncation
level (NT = 10 and N ′T = 8) have been reported by Nagata (1993): the growth rates
of subharmonic modes, (d, b) = ( 1

2
α, 0), (0, 1

2
β) and ( 1

2
α, 1

2
β), are all positive around

the fold of the three-dimensional solution branch. Therefore, it seems that the three-
dimensional plane Couette flow is unstable near its abrupt bifurcation. More accurate
investigation is under way.

6 Conclusion
It is found that the steady three-dimensional tertiary solutions which bifurcate from

the steady streamwise vortex flows in a rotating plane Couette system are stable for
relatively small Reynolds numbers within a certain range of the rotation, provided
that the (constant) vorticity of the basic flow has the opposite orientation to the
background rotation. The stability range in the (α, Ω)-space is bounded by subhar-
monic instabilities. As the Reynolds number is increased, two kinds of oscillatory
instabilities set in. One of them appears in such a way that they bound the region
for the stable tertiary solution from inside. The other appears at a large wavenumber
α. The stable tertiary flows with wavenumbers (α, β) = (1.0, 3.117) at R = 200 and
R = 400 are presented in figures 6 and 13, respectively. The flow patterns resemble the
wavy motions observed by Tillmark & Alfredsson (1996) (see their figure 3b) at the
breakdown of the stationary steamwise roll cells with spanwise width approximately
equal to the gap between the two plates, i.e. β ' π, although the Reynolds number
of their figure corresponds to our R = 800. (Their rotation number Ro ' 0.01 cor-
responds to our Ω = 8.) The streamwise wavelength of the observed wavy pattern is
approximately three times the spanwise width of the roll cells, i.e. β/α ' 3. Although
it is almost impossible to analyse the flow at R = 800 theoretically at present due to
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the lack of accuracy, we hope that experiments will be carried out for smaller R in
order to check the prediction given in the current study.

Our analysis shows that as the Reynolds number gets larger, the stability of
the tertiary flows is destroyed by oscillatory instabilities. Note that there are two
Hopf bifurcation points on the steady tertiary solution branch for R > 250 (see
figure 12). A loop of a three-dimensional time-dependent solution connecting these
two Hopf bifurcation points should be created. It may be interesting to follow the
time-dependent solution branch at higher Reynolds number. As in the case of steady
three-dimensional solutions, the branch may reach Ω = 0, creating nonlinear time-
dependent solutions in a plane Couette system. This time-dependent flow could be
a standing wave solution, completely different from those shape-preserving three-
dimensional travelling wave solutions recently obtained by Nagata (1997), where the
bifurcation of plane Couette flow mixed with a plane Poiseuille flow was considered.

It should be noted that the non-rotating plane Couette flow is rather special among
shear motions in the sense that the spanwise vorticity is destributed homogeneously
across the fluid layer. This homegeneous distribution of the spanwise vorticity of
the basic flow seems to be related to the absence of the instability due to the Orr–
Sommerfeld mode. The absence of linear instabilities had hampered nonlinear analyses
in plane Couette flow until the discovery of the nonlinear steady three-dimensional
solution by Nagata (1990). Recently, three-dimensional plane Couette flow solutions
were detected by Clever & Busse (1992) in the limit of vanishing Rayleigh number
in Bénard convection with a plane Couette system. They are identical to the solution
by Nagata (1990). More recently, Cherhabili & Ehrenstein (1997) reported spatially
localized structures both in the two-dimensional case (unstable) and in the three-
dimensional case (stability not analysed) by continuing nonlinear travelling wave
solutions in plane Poiseuille flow to the plane Couette flow limit. It is likely that all
the steady equilibrium states obtained in plane Couette flow so far are unstable and
physically unrealizable. The sinusoidal flow patterns presented in this paper and in
Nagata (1990) resemble the spatially organized structure observed during a quasi-
cyclic regeneration process of the turbulent structure of plane Couette flow examined
by direct numerical simulations (Hamilton, Kim & Waleffe 1995). Resemblance is so
good that we believe the equilibrium state found by Nagata (1990) plays an important
role as an unstable fixed point in subcritical transition of the Navier–Stokes system
(Waleffe 1995).

The absence of tertiary solutions for small α must be investigated in detail in
conjunction with the mode interaction with the wavenumber ratio 1 : 3. As in the
Rayleigh–Bénard convection new solutions may arise (Nagata 1995).

Appendix
The set A2 for the steady three-dimensional solutions is represented by

φ :



cosm ′ αx cos n ′ βy f` ′ (z)
cosm′′αx cos n′′βy f`′′(z)
cosm ′ αx sin n′′βy f`′′(z)
cosm′′αx sin n ′ βy f` ′ (z)
sinm ′ αx cos n ′ βy f`′′(z)
sinm′′αx cos n′′βy f` ′ (z)
sinm ′ αx sin n′′βy f` ′ (z)
sinm′′αx sin n ′ βy f`′′(z)


, ψ :



cosm ′ αx cos n′′βy sin `′′π(z + 1
2
)

cosm′′αx cos n ′ βy sin ` ′ π(z + 1
2
)

cosm ′ αx sin n ′ βy sin ` ′ π(z + 1
2
)

cosm′′αx sin n′′βy sin `′′π(z + 1
2
)

sinm ′ αx cos n′′βy sin ` ′ π(z + 1
2
)

sinm′′αx cos n ′ βy sin `′′π(z + 1
2
)

sinm ′ αx sin n ′ βy sin `′′π(z + 1
2
)

sinm′′αx sin n′′βy sin ` ′ π(z + 1
2
)


, (A 1)
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where m ′ , n ′ , and ` ′ stand for odd integers, whereas m′′, n′′, and `′′ stand for even
integers.

The two-dimensional streamwise vortex flows, U0 in Nagata (1986), can be
recovered from the above expression by disregarding all the contributions except
m′′ = 0:

φ :

{
cos n′′βy f`′′(z)

sin n ′ βy f` ′ (z)

}
, ψ :

{
cos n ′ βy sin ` ′ π(z + 1

2
)

sin n′′βy sin `′′π(z + 1
2
)

}
. (A 2)

The restriction of (A 1) to spanwise-independent flows, on the other hand, could
be achieved by keeping only those contributions with n′′ = 0:

φ :

{
cosm′′αx f`′′(z)

sinm′′αx f` ′ (z)

}
, ψ :

{
cosm ′ αx sin `′′π(z + 1

2
)

sinm ′ αx sin ` ′ π(z + 1
2
)

}
. (A 3)

Although the Orr–Sommerfeld mode (two-dimensional flow with ∂y ≡ 0 and ψ ≡ 0)
is included in (A 3) (regard 2α as the primary wavenumber for φ), the non-zero contri-
bution of ψ in this restriction suggests that the setA2 does not originate directly from
the instability due to the Orr–Sommerfeld mode. The three-dimensional representation
A1 whose restriction to n′′ = 0 is identical to the Orr–Sommerfeld mode is listed in
Nagata (1986).

Four classes for perturbations imposed on the steady three-dimensional solution
A2 are described below.

Class A: d = 0, b 6= 0

φ̃ , ψ̃ :



cosm′′αx cos n′′βy F`′′(z)

cosm′′αx sin n′′βy F`′′(z)

cosm′′αx cos n ′ βy F` ′ (z)

cosm′′αx sin n ′ βy F` ′ (z)

sinm ′ αx cos n′′βy F`′′(z)

sinm ′ αx sin n′′βy F`′′(z)

sinm ′ αx cos n ′ βy F` ′ (z)

sinm ′ αx sin n ′ βy F` ′ (z)

cosm ′ αx cos n′′βy F` ′ (z)

cosm ′ αx sin n′′βy F` ′ (z)

cosm ′ αx cos n ′ βy F`′′(z)

cosm ′ αx sin n ′ βy F`′′(z)

sinm′′αx cos n′′βy F` ′ (z)

sinm′′αx sin n′′βy F` ′ (z)

sinm′′αx cos n ′ βy F`′′(z)

sinm′′αx sin n ′ βy F`′′(z)



, (A 4)
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Class B: d = 0, b 6= 0

φ̃ , ψ̃ :



cosm ′ αx cos n′′βy F`′′(z)

cosm ′ αx sin n′′βy F`′′(z)

cosm ′ αx cos n ′ βy F` ′ (z)

cosm ′ αx sin n ′ βy F` ′ (z)

sinm′′αx cos n′′βy F`′′(z)

sinm′′αx sin n′′βy F`′′(z)

sinm′′αx cos n ′ βy F` ′ (z)

sinm′′αx sin n ′ βy F` ′ (z)

cosm′′αx cos n′′βy F` ′ (z)

cosm′′αx sin n′′βy F` ′ (z)

cosm′′αx cos n ′ βy F`′′(z)

cosm′′αx sin n ′ βy F`′′(z)

sinm ′ αx cos n′′βy F` ′ (z)

sinm ′ αx sin n′′βy F` ′ (z)

sinm ′ αx cos n ′ βy F`′′(z)

sinm ′ αx sin n ′ βy F`′′(z)



, (A 5)

Class C: d 6= 0, b = 0

φ̃ :



cosm′′αx cos n′′βy F`′′(z)

cosm′′αx cos n′′βy F` ′ (z)

cosm′′αx cos n ′ βy F`′′(z)

cosm′′αx cos n ′ βy F` ′ (z)

sinm′′αx cos n′′βy F`′′(z)

sinm′′αx cos n′′βy F` ′ (z)

sinm′′αx cos n ′ βy F`′′(z)

sinm′′αx cos n ′ βy F` ′ (z)

cosm ′ αx sin n′′βy F`′′(z)

cosm ′ αx sin n′′βy F` ′ (z)

cosm ′ αx sin n ′ βy F`′′(z)

cosm ′ αx sin n ′ βy F` ′ (z)

sinm ′ αx sin n′′βy F`′′(z)

sinm ′ αx sin n′′βy F` ′ (z)

sinm ′ αx sin n ′ βy F`′′(z)

sinm ′ αx sin n ′ βy F` ′ (z)



, ψ̃ :



cosm ′ αx cos n′′βy F`′′(z)

cosm ′ αx cos n′′βy F` ′ (z)

cosm ′ αx cos n ′ βy F`′′(z)

cosm ′ αx cos n ′ βy F` ′ (z)

sinm ′ αx cos n′′βy F`′′(z)

sinm ′ αx cos n′′βy F` ′ (z)

sinm ′ αx cos n ′ βy F`′′(z)

sinm ′ αx cos n ′ βy F` ′ (z)

cosm′′αx sin n′′βy F`′′(z)

cosm′′αx sin n′′βy F` ′ (z)

cosm′′αx sin n ′ βy F`′′(z)

cosm′′αx sin n ′ βy F` ′ (z)

sinm′′αx sin n′′βy F`′′(z)

sinm′′αx sin n′′βy F` ′ (z)

sinm′′αx sin n ′ βy F`′′(z)

sinm′′αx sin n ′ βy F` ′ (z)



, (A 6)
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Class D: d 6= 0, b = 0

φ̃ :



cosm′′αx sin n′′βy F`′′(z)

cosm′′αx sin n′′βy F` ′ (z)

cosm′′αx sin n ′ βy F`′′(z)

cosm′′αx sin n ′ βy F` ′ (z)

sinm′′αx sin n′′βy F`′′(z)

sinm′′αx sin n′′βy F` ′ (z)

sinm′′αx sin n ′ βy F`′′(z)

sinm′′αx sin n ′ βy F` ′ (z)

cosm ′ αx cos n′′βy F`′′(z)

cosm ′ αx cos n′′βy F` ′ (z)

cosm ′ αx cos n ′ βy F`′′(z)

cosm ′ αx cos n ′ βy F` ′ (z)

sinm ′ αx cos n′′βy F`′′(z)

sinm ′ αx cos n′′βy F` ′ (z)

sinm ′ αx cos n ′ βy F`′′(z)

sinm ′ αx cos n ′ βy F` ′ (z)



, ψ̃ :



cosm ′ αx sin n′′βy F`′′(z)

cosm ′ αx sin n′′βy F` ′ (z)

cosm ′ αx sin n ′ βy F`′′(z)

cosm ′ αx sin n ′ βy F` ′ (z)

sinm ′ αx sin n′′βy F`′′(z)

sinm ′ αx sin n′′βy F` ′ (z)

sinm ′ αx sin n ′ βy F`′′(z)

sinm ′ αx sin n ′ βy F` ′ (z)

cosm′′αx cos n′′βy F`′′(z)

cosm′′αx cos n′′βy F` ′ (z)

cosm′′αx cos n ′ βy F`′′(z)

cosm′′αx cos n ′ βy F` ′ (z)

sinm′′αx cos n′′βy F`′′(z)

sinm′′αx cos n′′βy F` ′ (z)

sinm′′αx cos n ′ βy F`′′(z)

sinm′′αx cos n ′ βy F` ′ (z)



. (A 7)

Here, for simplicity, F` ′ (z) and F`′′(z) represent f` ′ (z) and f`′′(z) for φ̃, or sin ` ′ π(z+ 1
2
)

and sin `′′π(z + 1
2
) for ψ̃. It should be added that when dealing with the stability of

streamwise vortex flows, only those components with m′′ = 0 are retained in classes
C and D: they are classified as ŨI and ŨII in Nagata (1986).
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